11,12-Secoprostaglandins. 6. Interphenylene Analogues of Acylhydroxyalkanoic Acids and Related Compounds as Renal Vasodilators

John B. Bicking, ${ }^{*, \dagger}$ Charles M. Robb, ${ }^{\dagger}$ Edward J. Cragoe, Jr., ${ }^{\dagger}$ Edward H. Blaine, ${ }^{*, \dagger}$ L. Sherman Watson, ${ }^{\ddagger}$ and Mary C. Dunlay ${ }^{\ddagger}$
Merck Sharp \& Dohme Research Laboratories and Merck Institute for Therapeutic Research, West Point, Pennsylvania 19486. Received June 1, 1982

Abstract

The synthesis is described of a series of interphenylene analogues of the modified 11,12 -secoprostaglandins and their sulfonamide isosteres on which we have reported previously. The new compounds are formally derived from members of earlier series by replacement of segments of the methylene chains by phenylene units. Several of these compounds displayed renal vasodilatory activity on iv stat administration to anesthetized dogs. 4-(4-Acetyl-8hydroxytridecyl) benzoic acid tested additionally in conscious dogs orally caused a significant increase in renal blood flow at $5 \mathrm{mg} / \mathrm{kg}$.

We have reported that structurally simplified 11,12 secoprostaglandins, such as members of a series of acylhydroxyalkanoic acids (e.g., 1) ${ }^{1}$ and of isoteric amides, ${ }^{2}$

sulfones, ${ }^{3}$ and sulfonamides (e.g., 2), ${ }^{4}$ show a number of the characteristic biological actions of the prostaglandins of the E series. Most recently, we reported ${ }^{5}$ that analogues of 1 and 2 bearing terminal aryloxy groups (e.g., 3) retain certain PGE_{1}-like actions, the most notable being inhibition of blood platelet aggregation.

The present paper is concerned with the synthesis and biological evaluation of further aryl-substituted analogues of 1 and 2 wherein phenylene groups replace methylene units of the carbon chain between the carboxy group and the acetyl or methylsulfonyl side chain. After this work was begun, Nelson, Nishizawa, and co-workers described analogues of PGE_{1} and $\mathrm{PGF}_{1 \alpha}$ that contain phenylenoxy units in the carboxy chain. ${ }^{6}$ The PGE_{1} analogue, 4 , displayed a spectrum of activity similar to that of the natural substance and gave evidence of increased stability and specificity.

[^0]

Scheme I

a, $\mathrm{A}=-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-p ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
c) $\mathrm{A}=-\left(\mathrm{CH}^{2}\right)^{3}-\mathrm{C} \mathrm{H}_{4}-m, \mathrm{R}=\mathrm{CH}$
d, $\mathrm{A}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-p ; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathrm{e}, \mathrm{A}=-\left(\mathrm{CH}_{2}\right)_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}=\mathrm{CH}-; \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$

$=-\left(\mathrm{CH}_{8}\right)_{-}-\mathrm{C}_{6} \mathrm{H}_{4} \cdot p$
6, $\left.\mathrm{A}=-\left(\mathrm{CH}_{2}\right)_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{4}-m$
8, $\mathrm{A}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{p}$
$9, \mathrm{~A}=-\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}=\mathrm{CH}-$
Chemistry. Compounds prepared for biological assay are listed in Table I. Their syntheses follow the general
(1) Bicking, J. B.; Robb, C. M.; Smith, R. L.; Cragoe, E. J., Jr.; Kuehl, F. A., Jr.; Mandel, L. R. J. Med. Chem. 1977, $20,35$.
(2) Jones, J. H.; Holtz, W. J.; Bicking, J. B.; Cragoe, E. J., Jr.; Mandel, L. R.; Kuehl, F. A., Jr. J. Med. Chem. 1977, 20, 44.
(3) Smith, R. L.; Bicking, J. B.; Gould, N. P.; Lee, T.-J.; Robb, C. M.; Kuehl, F. A., Jr.; Mandel, L. R.; Cragoe, E. J., Jr. J. Med. Chem. 1977, 20, 540.
(4) Jones, J. H.; Holtz, W. J.; Bicking, J. B.; Cragoe, E. J., Jr.; Mandel, L. R.; Kuehl, F. A., Jr. J. Med. Chem. 1977, 20, 1299.

Table I. Interphenylene Analogues of 11,12 -Secoprostaglandins and Related Compounds

[^1]plan described in our earlier papers on the secoprostaglandins. ${ }^{1-5}$ Compounds 5-9 were prepared as shown

[^2]in Scheme I. tert-Butyl acetoacetate was alkylated with alkyl bromides $17 \mathrm{a}-\mathbf{e}$ in order to introduce the eventual phenylene-containing carboxy-terminal moieties. The
(6) Nelson, N. A.; Jackson, R. W.; Au, A. T.; Wynalda, D. J.; Nishizawa, E. E. Prostaglandins 1975, 10, 795.

Scheme II

resulting dicarboxylic esters $18 \mathbf{a}-\mathbf{e}$ were alkylated with 1 -chloro-4-acetoxynonane. Esters $19 a-e$ so produced were subjected to acid-catalyzed elimination-decarboxylation and saponification to yield 5-9.

A route involving acid-catalyzed cleavage of the tertbutoxycarbonyl group is precluded for the synthesis of 11 in which an acylated propargylic alcohol is an intermediate and, likewise, undergoes a facile acid-catalyzed elimination. Accordingly, 11 was prepared via the sequential alkylations of ethyl acetoacetate as shown in Scheme II. The resulting dicarboxylic ester 22 was saponified and decarboxylated to yield the acetylenic acid 23 , which gave 11 on catalytic hydrogenation.

The method of preparation of 12 , an oxa analogue of 5 , is outlined in Scheme III. Epoxide 26 was obtained by reaction of m-chloroperbenzoic acid with olefinic ester 25 prepared by a conventional acetoacetic ester alkylation sequence. The epoxide was treated with sodium propoxide, and the resulting ester was saponified to yield 12.

The sulfonamido acids 14 and 15 were prepared by sequential alkylations of methanesulfonamide (Scheme IV). The alkylation of methanesulfonamide with ethyl 4-(3bromopropyl)benzoate (17a) under a variety of conditions produced a roughly $2: 1$ mixture of the monoalkylated and dialkylated sulfonamides. These were separated by column chromatography, and the monoalkylated product was carried on to 15 . Compounds 10,13 , and 16 in Table I were obtained, respectively, by reduction of $9\left(\mathrm{H}_{2}, \mathrm{Pd}\right), 5(\mathrm{Na}-$ $\left.\mathrm{BH}_{4}\right)$, and $15\left(\mathrm{H}_{2}, \mathrm{Pt}\right)$.

The preparations of alkylating agents 17 a and 17 e were conventional. The preparation of methyl 3 -(3-bromopropyl) benzoate ($\mathbf{1 7 b}$) (Scheme V) began with the reaction of benzyloxyacetaldehyde with the ylide derived from

Scheme III

phosphonium bromide 30. Hydrogenolysis-hydrogenation of the product of this Wittig condensation (31) gave hydroxy ester 32, which was treated with PBr_{3} to produce $\mathbf{1 7 b}$. The key step in the synthesis of ethyl 4-(4-bromobutyl)benzoate (17d) (Scheme VI) was the alkylation by 2-(3-bromopropoxy)tetrahydro-2H-pyran of the dilithio derivative of p-toluic acid prepared by reaction of the acid with 2 equiv of lithium diisopropylamine. Simultaneous deprotection and esterification of the product with ethanol and acid gave hydroxy ester 33, which was converted to 17 d by the action of PBr_{3}. Alkylating agent 17 c was prepared analogously from 0 -toluic acid.
The keto acids 5-10 and 12, as obtained, consist of four stereoisomers presumably in equal parts; the hydroxy acid 13 consists of the eight possible stereoisomers probably in nearly equal amounts. Acids 11 and 14 are racemates; 15 and 16 are achiral entities. Separation of isomers was not attempted in any case, since our experience with the separated isomers of 1 and $2^{2,5}$ has suggested that biological activity is not strongly dependent on the configuration of the chiral centers in these flexible molecules.
The product acids that are not crystalline solids are extremely viscous oils that retain solvents tenaciously. Samples suitable for analysis and biological testing could be obtained in these cases only by being heated at $100^{\circ} \mathrm{C}$ under high vacuum for 4-8 h .

Biological Results and Discussion

A screening assay for renal vasodilatory activity is one of a group of assays to which our prostaglandin analogues have been submitted routinely. The basis for the inclusion of this screen is the series of observations that prostaglandins of the E, A, and D series increase renal blood flow in dogs and man. ${ }^{7}$ This effect is observed most readily when the prostaglandins that are subject to rapid metabolic inactivation are infused directly into the renal artery. The detection of renal vasodilatory activity in prostaglandin analogues sufficiently stable for administration by clinically practicable routes would be the first step in the development of a new class of agents for the enhancement of renal blood flow.
When compounds 5-8 and 10-16 were broadly screened, we found renal vasodilation to be the most noteworthy and
(7) Dunn, M. J.; Hood, V. L. Am. J. Physiol. 1977, 233, F 169.

Scheme IV

Scheme V

Scheme VI

generally displayed activity detectable in this group of compounds. The effects of these analogues on the renal vasculature are reported in Table II in terms of the calculated changes produced in renal resistance (RR).

A detailed description of the experimental protocol is provided under Experimental Section. Briefly, our compounds were screened in anesthetized dogs that were prepared by placement of an electromagnetic blood flow transducer on one renal artery, the contralateral kidney having been removed. Because prostaglandins can also act as hypotensive agents, arterial blood pressure (BP) was monitored during the experiments. Two dogs were tested with each compound, except for time control studies in

Table II. Effects of PG Analogues on Renal Resistance in Anesthetized Dogs

		renal resistance (RR)		
compd b	no. of dogs	control period c	drug period ${ }^{c}$	\% change in RR
5	2	0.74 ± 0.22	0.39 ± 0.02	-47
6	2	0.86 ± 0.21	0.69 ± 0.19	-20
7	2	0.58 ± 0.09	0.69 ± 0.06	19
8	2	1.17 ± 0.10	1.38 ± 0.25	18
10	2	0.83 ± 0.26	0.94 ± 0.25	13
11	2	0.99 ± 0.14	0.57 ± 0.16	-42
12	2	1.04 ± 0.25	0.59 ± 0.16	-43
13	2	0.81 ± 0.23	0.66 ± 0.16	-19
14	2	0.75 ± 0.25	0.79 ± 0.20	5
15	2	0.62 ± 0.26	0.56 ± 0.16	-10
16	2	0.94 ± 0.26	0.87 ± 0.29	-7
placebo d	3	0.96 ± 0.11	1.10 ± 0.11	15

${ }^{a}$ A dose of $500 \mu \mathrm{~g} / \mathrm{kg}$ in aqueous solution as the Na salt was given to each of two dogs by iv bolus injection.
${ }^{6}$ Resistance was calculated by dividing mean arterial pressure by mean renal blood flow, which averaged 125 ± 2 mmHg and $189 \pm \mathrm{mL} / \mathrm{min}$, respectively, for all dogs studied during the control period. ${ }^{c}$ Values are means \pm SE for the $30-\mathrm{min}$ pretreatment period and the $30-\mathrm{min}$ posttreatment drug period. ${ }^{d}$ Isotonic saline solution was given by iv injection.
which three dogs were studied. After a $30-\mathrm{min}$ period during which renal blood flow (RBF) and BP were monitored, $500 \mu \mathrm{~g} / \mathrm{kg}$ of the test compound was injected iv, and monitoring of the variables was continued during the subsequent $30-\mathrm{min}$ period. RR was calculated by dividing mean BP by mean RBF observed in the control and postinjection periods.

We consider the calculated changes in RR to be the best measure of renal vasodilatory action, since RBF is affected not only by renal vasodilation or vasoconstriction but also by changes in BP that can result from a peripheral vasodilatory action of the test compounds. Actually, the changes in BP produced by this group of compounds were small; both increases and decreases were observed.

This screening assay identifies compounds 5,11 , and 12 as highly effective renal vasodilators producing 47,42 , and 43% decreases in RR, respectively, at the test dose of 500

Table III. Effects of Oral Administration of Compound 5 on Cardiovascular Parameters in the Conscious Dog

compd	dose, mg/kg, po	no. of dogs	observation period	mean renal blood flow, ${ }^{a}$ $\mathrm{mL} / \mathrm{min} \pm \mathrm{SE}$	mean arterial blood pressure, ${ }^{a}$ $\mathrm{mmHg} \pm \mathrm{SE}$	mean heart rate, ${ }^{a}$ beats $/ \mathrm{min} \pm \mathrm{SE}$
5	5	3	control ${ }^{\text {b }}$	111 ± 12	113 ± 10	64 ± 9
			$0-1{ }^{\text {c }}$	137 ± 27	116 ± 11	74 ± 11
			1-2 ${ }^{\text {c }}$	194 ± 45	106 ± 7	73 ± 3
			$2-3^{c}$	173 ± 24	97 ± 3	74 ± 8
			3-4 ${ }^{\text {c }}$	139 ± 12	95 ± 6	64 ± 6
			$4-5^{c}$	124 ± 7	106 ± 23	68 ± 8
placebo ${ }^{\text {d }}$		5	control ${ }^{\text {b }}$	111 ± 13	112 ± 6	88 ± 7
			$0-1{ }^{\text {c }}$	115 ± 13	111 ± 3	88 ± 7
			1-2 ${ }^{\text {c }}$	116 ± 9	110 ± 5	88 ± 7
			$2-3{ }^{\text {c }}$	129 ± 8	114 ± 5	90 ± 9
			3-4 ${ }^{\text {c }}$	122 ± 9	113 ± 6	86 ± 8
			$4-5^{c}$	123 ± 10	115 ± 5	85 ± 8

[^3]$\mu \mathrm{g} / \mathrm{kg}$ iv. Four analogues, 6, 13, 15, and 16, decreased RR to a lesser degree. $R R$ was seen to increase after administration of $7,8,10$, and 14 . However, RR increased (15%) during the placebo postinjection period so that it is unlikely that any analogue of this latter group caused renal vasoconstriction.

Compound 5 was tested for activity or oral administration of $5 \mathrm{mg} / \mathrm{kg}$ in a similar protocol employing conscious dogs. RBF, BP, and heart rate (HR) were monitored during a $30-\mathrm{min}$ control period and during a $5-\mathrm{h}$ period after administration of 5 . Each variable was recorded at $2-\mathrm{min}$ intervals. These data were averaged for the control period and for each hour of the posttreatment period to give the mean values recorded in Table III. Compound 5 is seen to cause a significant rise in RBF in the 2nd and 3rd hours following dosage. Its effects on BP and HR are small and nonsignificant in these experiments.

These preliminary demonstrations of renal vasodilatory activity in 5,11 , and 12 have caused us to regard the interphenylene secoprostaglandins as leads to the development of a clinically useful, orally active renal vasodilator. We have proceeded by building the structural features found in these compounds into other groups of prostaglandin analogues, particularly those in which heterocyclic rings replace the cyclopentane ring of the natural substances. The results of this work will be reported later.

Experimental Section

Chemical. Melting and boiling points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were taken on a Varian T-60 spectrometer in CDCl_{3}. Chemical shifts are reported as parts per million relative to $\mathrm{Me}_{4} \mathrm{Si}_{\mathrm{Si}}$ as an internal standard.

Solutions in organic solvents were dried with MgSO_{4}. Column chromatography was carried out on silica gel (E. Merck, particle size $0.063-0.20 \mathrm{~mm}$). We used thin-layer chromatography (TLC) to monitor column fractions and to establish the homogeneity of products. It was performed on Analtech silica gel GF plates (thickness $250 \mu \mathrm{~m}$). Spots were located with iodine vapor. A standard solvent system was used for TLC of all acid products consisting of $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}$ (95:4:1). A standard solvent system for TLC of esters was $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3}.

Compounds were prepared for analysis and biological testing by being heated at $100^{\circ} \mathrm{C}$ under oil pump vacuum for $4-6 \mathrm{~h}$. When analyses are indicated only by the symbols of the elements, the analytical results obtained for these elements are within 0.4% of the theoretical values.

Ethyl 4-(3-Bromopropyl)benzoate (17a). A mixture of 4-(3-bromopropyl)benzoic acid ${ }^{8}$ ($100.8 \mathrm{~g}, 0.41 \mathrm{~mol}$), benzene (290
mL), ethanol (60 mL), and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(1.4 \mathrm{~mL})$ was boiled under a Dean and Stark constant water separator until the production of water ceased (23 h). The mixture was cooled, washed with water and $5 \% \mathrm{NaHCO}_{3}$ solution, and dried. The solvents were evaporated, and the residual oil was distilled at reduced pressure to afford $99 \mathrm{~g}(89 \%)$) of the ester as a colorless oil, bp $136-139^{\circ} \mathrm{C}(0.05 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2}\right) \mathrm{C}, \mathrm{H}$.

Methyl 3-(3-Bromopropyl)benzoate (17b). (a) Methyl 3-[3-(Benzyloxy)-1-propenyl]benzoate. [3-(Methoxycarbonyl) benzyl]triphenylphosphonium bromide ${ }^{9}$ ($38.8 \mathrm{~g}, 0.079$ mol) and (benzyloxy) acetaldehyde ${ }^{10}(11.9 \mathrm{~g}, 0.079 \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(350 \mathrm{~mL})$. The solution was stirred at room temperature while a solution of NaOCH_{3}, made by dissolving Na ($1.91 \mathrm{~g}, 0.083 \mathrm{~mol}$) in $\mathrm{CH}_{3} \mathrm{OH}(40 \mathrm{~mL}$), was added dropwise during 30 min . The solution was stirred for an additional 3.5 h . Most of the solvent was evaporated at reduced pressure. The residue was treated with $\mathrm{H}_{2} \mathrm{O}$, and the oil was taken up in $\mathrm{Et}_{2} \mathrm{O}$. $\mathrm{The}^{\mathrm{Et}} \mathrm{O}_{2}$ solution was separated and evaporated, leaving a semisolid residue. Petroleum ether ($\mathrm{bp} 30-60^{\circ} \mathrm{C}$) was added, and the insoluble triphenylphosphine oxide was removed by filtration. The petroleum ether solution was evaporated, and the residue was distilled to give $15.5 \mathrm{~g}(70 \%)$ of the product as a colorless oil, bp $173-178{ }^{\circ} \mathrm{C}(0.2 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
(b) Methyl 3-(3-Hydroxypropyl)benzoate. Methyl 3-[3-(benzyloxy)-1-propenyl]benzoate ($15.2 \mathrm{~g}, 0.054 \mathrm{~mol}$) and p toluenesulfonic acid hydrate (0.5 g) were dissolved in $\mathrm{EtOAc}(75$ mL) and hydrogenated over 2 g of a $5 \% \mathrm{Pd}$-on-charcoal catalyst at $27^{\circ} \mathrm{C}$ and an initial pressure of 40 psi . The theoretical amount of hydrogen (0.11 mol) was absorbed in 2.5 h . The catalyst was removed by filtration, and the solvent was evaporated. The residue was taken up in $\mathrm{Et}_{2} \mathrm{O}$, washed with NaHCO_{3} solution and $\mathrm{H}_{2} \mathrm{O}$, and dried. Evaporation of $\mathrm{Et}_{2} \mathrm{O}$ gave $9.7 \mathrm{~g}(92 \%)$ of the hydroxy ester as a colorless oil: NMR $\delta 1.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $2.33(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 3.85$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}$).
(c) Methyl 3-(3-Bromopropyl)benzoate (17b). A solution of $\mathrm{PBr}_{3}(4.9 \mathrm{~g}, 0.018 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added to a solution of methyl 3 -(3-hydroxypropyl) benzoate $\left(9.6 \mathrm{~g}, 0.049 \mathrm{~mol}\right.$) in $\mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ during 30 min. . The resulting mixture was stirred at $25-27^{\circ} \mathrm{C}$ for 22 h . Th mixture was then added to $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The organic layer was separated, washed with NaHCO_{3} solution and $\mathrm{H}_{2} \mathrm{O}$, and dried. Distillation gave $3.7 \mathrm{~g}(29 \%)$ of the bromo ester: colorless oil; bp $130-131^{\circ} \mathrm{C}(0.2 \mathrm{~mm})$. Anal. ($\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$) C, H .

Ethyl 4-(4-Bromobutyl)benzoate (17d). (a) Ethyl 4-(4Hydroxybutyl)benzoate. Butyllithium (140 mL of a 1.6 M solution in hexane, 0.224 mol) was added to a solution of diisopropylamine ($22.6 \mathrm{~g}, 0.223 \mathrm{~mol}$) in THF (200 mL) and HMPA (28 mL) at $0^{\circ} \mathrm{C}$ during 30 min . A partial solution/suspension of p-toluic acid ($15.1 \mathrm{~g}, 0.111 \mathrm{~mol}$) in THF (50 mL) was then added
(9) Coombs, M. M.; Houghton, R. P. J. Chem. Soc. 1961, 5015.
(10) Sabetay, S.; Mira, D. N. C. R. Hebd. Seances Acad. Sci. 1932, 194, 617; Chem. Abstr. 1932, 26, 2725.
dropwise during $30 \min$ at $0-5^{\circ} \mathrm{C}$, followed, after an additional 30 min , by 2 -(3-bromopropoxy)tetrahydro- 2 H -pyran ${ }^{11}$ (24.9 g , 0.111 mol) added dropwise in 30 min at $0-5^{\circ} \mathrm{C}$. The solution was stirred for 30 min at $5^{\circ} \mathrm{C}$ while the color faded from dark brown to light yellow. The solution was then treated with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was separated and acidified with concentrated hydrochloric acid. The crude acid product that separated was taken up in $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried, and the solution was evaporated to yield 30 g of a residual oil. A solution of this oil and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(1.2 \mathrm{~mL})$ in ethanol (210 mL) was boiled under reflux for 18 h . The ethanol was evaporated at reduced pressure, and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated NaHCO_{3} solution, and dried. Distillation afforded $11.4 \mathrm{~g}(48 \%)$ of the hydroxy ester: colorless oil; bp $161^{\circ} \mathrm{C}(0.2$ $\mathrm{mm})$; NMR $\delta 1.37\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 2.23(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.70(2 \mathrm{H}, \mathrm{t}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 3.65 ($2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}$), 4.33 ($2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{OCO}$), 7.20 (2 H , d, aryl H), $7.90\left(2 \mathrm{H}\right.$, d, aryl H). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$.
(b) Ethyl 4-(4-Bromobutyl)benzoate (17d). A solution of $\mathrm{PBr}_{3}(6.0 \mathrm{~g}, 0.022 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to a solution of ethyl 4-(4-hydroxybutyl)benzoate ($13.4 \mathrm{~g}, 0.06 \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(130 \mathrm{~mL})$ during 10 min . The resulting solution was boiled under reflux for 5 h . Workup as with 17 b and distillation gave 8.5 g (50%) of the bromo ester: colorless oil; bp $145-147^{\circ} \mathrm{C}(0.15 \mathrm{~mm})$. Anal. ($\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$) C, H .

Ethyl 2-(4-bromobutyl)benzoate (17c) was prepared analogously to 17 d beginning with the alkylation of the dilithio derivative of o-toluic acid with 2-(3-bromopropoxy)tetrahydro- 2 H pyran. Ethyl 2-(4-hydroxybutyl)benzoate was obtained in 25% yield: colorless oil; bp $140-142^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. Bromo ester 17 c was obtained in 58% yield: colorless oil; bp $122-124^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}\right) \mathrm{H}$; C: calcd, 54.75 ; found, 55.26 .

Ethyl 4-(Bromomethyl)cinnamate (17e). A mixture of ethyl 4-methylcinnamate ($93.5 \mathrm{~g}, 0.492 \mathrm{~mol}$), N-bromosuccinimide (96.3 $\mathrm{g}, 0.541 \mathrm{~mol}), \alpha, \alpha^{\prime}$-azodiisobutyronitrile (1.0 g), and $\mathrm{CCl}_{4}(400 \mathrm{~mL})$ was boiled under reflux for 3 h . The mixture was cooled, and succinimide was removed by filtration. The filtrate was washed with $5 \% \mathrm{NaOH}$ solution and $\mathrm{H}_{2} \mathrm{O}$ and dried. Distillation gave $91.8 \mathrm{~g}(70 \%)$ of the bromo ester, bp $145-147^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$. The product subsequently solidified. Recrystallization from petroleum ether ($\mathrm{bp} 30-60^{\circ} \mathrm{C}$) gave white crystals: $\mathrm{mp} 49-50^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{2}\right) \mathrm{C}, \mathrm{H}$.

Physical, analytical, and yield data for the acids 5-16 are listed in Table I. The method used for the preparation of acids 5-9 (Scheme I) is exemplified by the preparation of 4-(4-acetyl-8hydroxytridecyl)benzoic acid (5).
(a) Ethyl 4-[4-(tert-Butoxycarbonyl)-5-oxohexyl]benzoate (18a). tert-Butyl acetoacetate ($23.7 \mathrm{~g}, 0.15 \mathrm{~mol}$) was added during 30 min to a stirred suspension of $\mathrm{NaH}(4.0 \mathrm{~g}, 0.167 \mathrm{~mol})$ in benzene (75 mL) and DMF (75 mL). Stirring was continued for 30 min . Ethyl 4-(3-bromopropy) benzoate ($17 \mathrm{a} ; 40.7 \mathrm{~g}, 0.15 \mathrm{~mol}$) was then added during 15 min , and the mixture stirred and heated at 100 ${ }^{\circ} \mathrm{C}$ for 5 h . The mixture was cooled and treated with 300 mL of water. The organic layer was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried. The solvents were removed by evaporation at reduced pressure to give 51.1 g of crude 18a as an orange residual oil.
(b) Ethyl 4-[4-Acetyl-4-(tert-butoxycarbonyl)-8-acetoxytridecyl]benzoate (19a). Ester 18 a ($51.1 \mathrm{~g}, 0.147 \mathrm{~mol}$) was added during 30 min to a stirred suspension of $\mathrm{NaH}(3.9 \mathrm{~g}, 0.163 \mathrm{~mol})$ in benzene (75 mL) and DMF (75 mL). Stirring was continued for 30 min . 1-Chloro-4-acetoxynonane ${ }^{1}(36.0 \mathrm{~g}, 0.163 \mathrm{~mol})$ and $\mathrm{KI}(500 \mathrm{mg})$ were added, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 64 h . Workup as with the preceding alkylation gave 78.0 g of crude 19a as a red residual oil.
(c) Ethyl 4-(4-Acetyl-8-acetoxytridecyl)benzoate (20a). A solution of $19 \mathrm{a}(78.0 \mathrm{~g}, 0.145 \mathrm{~mol}$), p-toluenesulfonic acid (3 g), and $\mathrm{Ac}_{2} \mathrm{O}(15 \mathrm{~mL})$ in $\mathrm{AcOH}(300 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 4 h . The solution was then cooled and treated with 500 mL of water. The oily product was taken up in $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated NaHCO_{3} solution, and dried. The solvent was evaporated at reduced pressure to yield 53.7 g of crude $\mathbf{2 0 a}$. Chromatography on 500 g of silica gel with elution by $1 \% \mathrm{CH}_{3} \mathrm{OH}$

[^4]in CHCl_{3} gave $32.3 \mathrm{~g}(51 \%)$ of 20a as a yellow oil: $R_{f} 0.76$. Anal $\left(\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}$.
(d) 4-(4-Acetyl-8-hydroxytridecyl)benzoic Acid (5). A solution of $20 \mathrm{a}(32.0 \mathrm{~g}, 0.074 \mathrm{~mol})$ and $\mathrm{NaOH}(8.8 \mathrm{~g}, 0.22 \mathrm{~mol})$ in methanol (320 mL) and water (50 mL) was heated at $60^{\circ} \mathrm{C}$ for 18 h . Most of the methanol was distilled, and the residual solution was diluted with water and extracted with ether. The aqueous solution was acidified with concentrated hydrochloric acid. The precipitated oily product was taken up in ether and dried. Evaporation of the solvent left 20.1 g of crude 5, which was chromatographed on 350 g of SiO_{2} with $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} elution to yield $7.8 \mathrm{~g}(29 \%)$ of 5 as a colorless viscous oil: NMR $\delta 0.88\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.66(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 6.82(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ and COOH$), 7.16\left(2 \mathrm{H}, \mathrm{d}\right.$, aryl $\left.3,5-\mathrm{H}_{2}\right)$, 7.94 (2 H, d, aryl 2, 6-H).

Compound 6 was prepared analogously by the use of 17 b as the initial alkylating agent; 7 by the use of $17 \mathrm{c} ; 8$ by the use of 17d; and 9 by the use of 17 e . Compound 9 solidified after chromatography.

3-[4-(2-Acetyl-6-hydroxyundecyl)phenyl]propionic Acid (10). Compound $9(2.6 \mathrm{~g}, 0.0072 \mathrm{~mol})$ in EtOH (30 mL) was hydrogenated over 0.7 g of a $5 \% \mathrm{Pd}$-on-charcoal catalyst at 1 atmosphere and $27^{\circ} \mathrm{C}$. The theoretical amount of hydrogen was absorbed in 7 min . The catalyst was removed by filtration, the solvent was evaporated, and the residual oil was chromatographed on 45 g of silica gel with $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} elution. There was obtained $2.3 \mathrm{~g}(88 \%)$ of 10 as a colorless viscous oil.

4-[4-Acetyl-7-(1-hydroxycyclohexyl)heptyl]benzoic Acid (Scheme II) (11). (a) Ethyl 4-[4-Acetyl-4-(ethoxy-carbonyl)-7-(1-acetoxycyclohexyl)-6-heptyn-1-yl]benzoate (22). Ethyl acetoacetate ($13.0 \mathrm{~g}, 0.1 \mathrm{~mol}$) was added during 30 \min to a stirred suspension of $\mathrm{NaH}(2.6 \mathrm{~g}, 0.11 \mathrm{~mol})$ in benzene (50 mL) and DMF (50 mL). Bromo ester 17a ($29.8 \mathrm{~g}, 0.11 \mathrm{~mol}$) was then added during 15 min , and the mixture stirred and heated at $100^{\circ} \mathrm{C}$ for 4.5 h . Workup as with 18 a above yielded 32 g of crude oily ethyl 4 -[4-(ethoxycarbonyl)-5-oxohexyl]benzoate (21). Ester $21(0.1 \mathrm{~mol})$ was added to $\mathrm{NaH}(2.6 \mathrm{~g}, 0.11 \mathrm{~mol})$ in benzene (50 mL) and DMF (50 mL). 1-Acetoxy-1-(3 -bromo-1propynyl)cyclohexane ${ }^{1}(28.5 \mathrm{~g}, 0.11 \mathrm{~mol}$) was added, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 3 h . Standard workup gave 49.5 g of crude 22 as a red-brown residual oil.
(b) 4-[4-Acetyl-7-(1-hydroxycyclohexyl)-6-heptyn-1-yl]benzoic Acid (23). A solution of ester $22(49 \mathrm{~g}, 0.098 \mathrm{~mol})$ and $\mathrm{NaOH}(24 \mathrm{~g}, 0.6 \mathrm{~mol})$ in water $(60 \mathrm{~mL})$ and methanol $(540 \mathrm{~mL})$ was boiled under reflux for 4 h . Workup as in the preparation of 5 gave 35.6 g of a crude acidic product from which 23 was isolated by column chromatography on 530 g of SiO_{2} with 4% $\mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} as eluant. There was obtained 5.3 g of 23 as a yellow viscous oil: $R_{1} 0.36$; NMR $\delta 2.17$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), 7.24 $(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ and COOH$), 7.26\left(2 \mathrm{H}, \mathrm{d}\right.$, aryl $\left.3,5-\mathrm{H}_{2}\right), 8.02(2 \mathrm{H}, \mathrm{d}$, aryl $2,6-\mathrm{H}_{2}$).
(c) 4-[4-Acetyl-7-(1-hydroxycyclohexyl)heptyl]benzoic Acid (11). Acetylene 23 ($5.1 \mathrm{~g}, 0.014 \mathrm{~mol}$) in EtOAc (55 mL) was hydrogenated over 2.0 g of a $5 \% \mathrm{Pt} / \mathrm{C}$ catalyst at 1 atm of pressure and room temperature. The theoretical amount of $\mathrm{H}_{2}(0.028 \mathrm{~mol})$ was absorbed in 25 min . The catalyst was filtered off, the solvent was evaporated, and the residual oil was chromatographed on 75 g of SiO_{2} with $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} as eluant. There was obtained 3.7 g of 11 as a yellowish viscous oil.

4-(4-Acetyl-8-hydroxy-9-propoxynonyl)benzoic Acid (Scheme III) (12). (a) Ethyl 4-[4-Acetyl-4-(tert-butoxy carbonyl)-8-nonen-1-yl]benzoate (24). Alkylation of 18a (49.3 $\mathrm{g}, 0.142 \mathrm{~mol}$) with 5 -bromo-1-pentene ($23.2 \mathrm{~g}, 0.156 \mathrm{~mol}$) and NaH $(3.74 \mathrm{~g}, 0.156 \mathrm{~mol})$ in benzene-DMF $\left(100^{\circ} \mathrm{C}, 21 \mathrm{~h}\right)$ and standard workup gave 59.7 g crude 24 as an orange residual oil: NMR δ $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.67\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.8-5.2(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}=$), $5.5-6.0(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=)$.
(b) Ethyl 4-(4-Acetyl-8-nonen-1-yl)benzoate (25). Elimi-nation-decarboxylation was carried out on crude 24 ($59.5 \mathrm{~g}, 0.142$ mol assumed) by the procedure and workup described for the preparation of 20 a . Column chromatography of crude 25 (40.7 g) on 600 g of SiO_{2} with CHCl_{3} elution gave $14.4 \mathrm{~g}(32 \%)$ of $\mathbf{2 5}$: light yellow oil; $R_{f} 0.74$.
(c) Ethyl 4-(4-Acetyl-8,9-epoxynonyl)benzoate (26). A solution of $25(14.4 \mathrm{~g}, 0.0454 \mathrm{~mol})$ and m-chloroperbenzoic acid $(8.6 \mathrm{~g}, 0.05 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was kept at $27^{\circ} \mathrm{C}$. The
progress of the reaction was followed by TLC of samples of the solution with $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} as the developing solvent. In 20 h the spot $R_{f} 0.74$ for 25 was replaced by a single spot $R_{f} 0.60$. The solution was washed with 5% aqueous NaOH solution and water and dried. Evaporation of solvent gave $14.0 \mathrm{~g}(93 \%)$ of 26 as a light yellow oil: NMR $\delta 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, 2.35-3.0 (6 $\mathrm{H}, \mathrm{m}, \mathrm{CHCO}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CHOCH}_{2}$); vinyl protons absent.
(d) 4-(4-Acetyl-8-hydroxy-9-propoxynonyl)benzoic Acid (12). Epoxide $26(14.0 \mathrm{~g}, 0.042 \mathrm{~mol})$ was added to a solution of $\mathrm{Na}(2.9 \mathrm{~g}, 0.126 \mathrm{~mol})$ in 1-propanol $(200 \mathrm{~mL})$. The resulting solution was kept at $25^{\circ} \mathrm{C}$ for 4 h . The solution was then treated with 25 mL of 10% aqueous NaOH solution and kept at $25^{\circ} \mathrm{C}$ for 2 h . Most of the solvent was evaporated at reduced pressure. The residue was dissolved in 200 mL of water, and the solution extracted with ether and acidified with concentrated hydrochloric acid. Crude oily 12 obtained by ether extraction and evaporation weighed 16.4 g . It was chromatographed on 240 g of SiO_{2} with $2 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} elution. There was obtained 6.0 g of 12 as a light yellow viscous oil: NMR $\delta 0.90\left(3 \mathrm{H}, \mathbf{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.10$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$), 3.25-3.55 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $3.76(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 7.30\left(2 \mathrm{H}, \mathrm{d}\right.$, aryl $\left.3,5-\mathrm{H}_{2}\right), 7.40(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}$ and COOH$)$, $8.0\left(2 \mathrm{H}, \mathrm{d}\right.$, aryl $\left.2,6-\mathrm{H}_{2}\right)$.

4-[4-(1-Hydroxyethyl)-8-hydroxytridecyl]benzoic Acid (13). Compound $5(7.3 \mathrm{~g}, 0.02 \mathrm{~mol})$ and $\mathrm{NaBH}_{4}(0.76 \mathrm{~g}, 0.02 \mathrm{~mol})$ were dissolved in a solution of $\mathrm{NaOH}(1.2 \mathrm{~g}, 0.03 \mathrm{~mol})$ in water $(80 \mathrm{~mL})$. The resulting solution was allowed to stand at $27^{\circ} \mathrm{C}$ for 21 h . It was then acidified with concentrated hydrochloric acid. The oily acid that separated was taken up in ether, dried, and chromatographed on 100 g of silica gel with $4 \% \mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} elution. There was obtained $4.9 \mathrm{~g}(67 \%)$ of 13 : yellowish viscous oil; $R_{f} 0.29$.

4-[3-[N-(4-Hydroxynonyl)methanesulfonamido]propyl]benzoic Acid (14). N-(4-Acetoxynonyl)methanesulfonamide ${ }^{4}$ $(9.0 \mathrm{~g}, 0.032 \mathrm{~mol})$ was added during 15 min at $27^{\circ} \mathrm{C}$ to a suspension of $\mathrm{NaH}(0.84 \mathrm{~g}, 0.035 \mathrm{~mol})$ in benzene $(16 \mathrm{~mL})$ and DMF $(16 \mathrm{~mL})$. Stirring was continued for 15 min . Bromide $17 \mathrm{a}(9.6 \mathrm{~g}, 0.035 \mathrm{~mol}$) was then added, and the mixture and heated at $90^{\circ} \mathrm{C}$ for 3 h . Workup in the usual manner gave 15.0 g of the crude ethyl ester of 14 as a yellow viscous oil. The ethyl ester was added to a solution of $\mathrm{NaOH}(4.0 \mathrm{~g}, 0.1 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}$ $(160 \mathrm{~mL})$. The resulting solution was boiled under reflux for 2 h. Methanol was evaporated, and the residue was diluted with water and acidified with concentrated hydrochloric acid to precipitate 14 as a solid. Recyrstallization from BuCl gave 8.7 g of 14.

4-[3-[N-[3-(1-Hydroxycyclohexyl)-2-propyn-1-yl]methanesulfonamido]propyl]benzoic Acid (15). (a) Ethyl 4-(3-Methanesulfonamidopropyl)benzoate (27) and N, N -Bis[3-[4-(ethoxycarbonyl)phenyl]propyl]methanesulfonamide (28). Methanesulfonamide ($6.7 \mathrm{~g}, 0.07 \mathrm{~mol}$) was added to a suspension of $\mathrm{NaH}(1.8 \mathrm{~g}, 0.075 \mathrm{~mol})$ in benzene $(50 \mathrm{~mL})$ and DMF (50 mL). The mixture was heated and stirred at $90^{\circ} \mathrm{C}$ for 2.5 h . It was then cooled, treated with $17 \mathrm{a}(19.0 \mathrm{~g}, 0.07 \mathrm{~mol})$, and heated at $90^{\circ} \mathrm{C}$ for 28 h . Standard workup gave 19.2 g of an oily product, which was chromatographed on 260 g of SiO_{2} with 2% $\mathrm{CH}_{3} \mathrm{OH}$ in CHCl_{3} elution. A forerun was obtained consisting of the pure bisalkylated product 28: 4.7 g of light yellow oil; $R_{f} 0.56$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. A second fraction was taken consisting of the pure monoalkylated product 27: 7.0 g of light yellow oil, $R_{f} 0.30$. Anal. ($\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Ethyl 4-[3-[N-[3-(1-Hydroxycyclohexyl)-2-propyn-1-yl]methanesulfonamido]propyl]benzoate (29). Ester 27 (6.9 g , 0.024 mol) was added to $\mathrm{NaH}(0.6 \mathrm{~g}, 0.025 \mathrm{~mol})$ in benzene (20 mL) and DMF (20 mL). 1-Acetoxy-1-(3-bromo-1-propynyl)cyclohexane ${ }^{2}$ ($6.2 \mathrm{~g}, 0.024 \mathrm{~mol}$) was added, and the mixture was heated at $60^{\circ} \mathrm{C}$ for 1 h . Standard workup gave 11.2 g of crude 29 as an orange residual oil.

4-[3-[N-[3-(1-Hydroxycyclohexyl)-2-propyn-1-yl]methanesulfonamido]propyl]benzoic Acid (15). Hydrolysis
of ester 29 by the method described for the preparation of 14 provided 5.4 g of crystalline 15 .

4-[3-[N-[3-(1-Hydroxycyclohexyl)propyl]methanesulfonamido]propyl]benzoic Acid (16). Acetylene 15 ($4.4 \mathrm{~g}, 0.011 \mathrm{~mol}$) dissolved in AcOEt (50 mL) was hydrogenated at $27^{\circ} \mathrm{C}$ over 1 g of a 5% Pt-on-charcoal catalyst in a Parr apparatus at an initial pressure of 44 psi . When 0.022 mol of hydrogen had been absorbed (5 min), the catalyst was removed by filtration, and the solvent was evaporated to leave the product as a white solid. Recrystallization from $\mathrm{CH}_{3} \mathrm{CN}$ gave 2.9 g of 16 .

Renal Blood Flow Assays. (a) Anesthetized Dogs. Intravenous Administration. Male or female mongrel dogs weighing $14.5-34 \mathrm{~kg}$ were anesthetized with vinbarbital $(60 \mathrm{mg} / \mathrm{kg})$ and artifically respired with positive pressure ventilation. Via bilateral retroperitoneal incisions, the right kidney was removed and the left renal artery was dissected free of adjacent tissue for placement of a noncannulating electromagnetic flow transducer (Carolina Medical Electronics). A femoral artery and vein were catheterized with 19-gauge polyvinyl chloride tubing for bloodpressure measurement and intravenous injections, respectively. The dogs were allowed to recover from the surgical intervention for at least 30 min before any experimental observations were made. Mean renal blood flow (RBF) and mean arterial blood pressure (BP) were recorded with a digital system (Digitec) sampling each variable at $1-\mathrm{min}$ intervals. A $30-\mathrm{min}$ control period was followed by an intravenous injection of $500 \mu \mathrm{~g} / \mathrm{kg}$ of a test compound (in aqueous solution as the Na salt), and the variables were monitored for a subsequent 30 min postinjection period. Renal resistance was calculated by dividing the mean BP by the mean RBF.
(b) Conscious Dogs. Oral Administration. Female mongrel dogs averaging 15 kg in body weight were anesthetized with thiopental sodium ($12 \mathrm{mg} / \mathrm{kg}$), and an endotracheal tube was inserted. Surgical anesthesia was maintained with a halothaneoxygen mixture delivered via a positive pressure respirator. A midline laparotomy was performed and one renal artery (usually the left) was dissected free of adhering connective tissue. An electromagnetic blood flow transducer (Micron Instruments or Statham Electronics) was placed around the renal artery close to its origin from the aorta. A second blood flow transducer was placed around the lower aorta $1-2 \mathrm{~cm}$ cephalad from the iliac bifurcation. The wire leads from the flow transducers were tunneled subcutaneously to exit between the shoulders. A polyvinyl chloride catheter for measurement of BP was inserted into the aorta via an iliac artery with its tip lying distal to the aortic flow probe. The abdominal incision was closed in layers, and after recovery from anesthesia, the flow transducer leads and catheter were protected by a sponge pad covered by a nylon jacket. All animals were allowed to recover from surgery for at least 3 days before being used in any experiment.

The conscious dogs prepared in this manner were kept in their transport cages during the studies reported here. The experimental protocol consisted of an initial $30-\mathrm{min}$ control period before treatment, followed by a 5 -h posttreatment observation period. The test compound was administered orally in a gelatin capsule. The outputs from the blood flow meters and the blood pressure transducer (Micron Instruments) were displayed on a cathode ray oscilloscope, and the data were recorded digitally at 2 -min intervals on a PDP 8 minicomputer. These data were averaged for the predrug control period and for each of the 5 h of postdrug observation. The zero flow base line was established electronically for both the renal and aortic blood flow transducers and was checked at $30-\mathrm{min}$ intervals during the course of each experiment.

Acknowledgment. We thank Mr. K. B. Streeter and his staff for elemental analyses and Mr. W. R. McGaughran and Ms. J. S. Murphy for NMR spectra. We are indebted to Drs. R. L. Smith and T.-J. Lee for helpful advice.

[^0]: ${ }^{\dagger}$ Merck Sharp \& Dohme Research Laboratories.
 ${ }^{\ddagger}$ Merck Institute for Therapeutic Research.

[^1]: ${ }^{a}$ Determined on SiO_{2} plates with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{HOAc}\left(95: 4: 1\right.$). ${ }^{b}$ Compounds were analyzed for C and H , and for N when present. ${ }^{c}$ Overall y ield according to Scheme I. ${ }^{d} \mathrm{C}$: calcd, 72.89 ; found, 71.57. ${ }^{e}$ Overall yield, Scheme II.
 ${ }^{f}$ Overall yield, Scheme III. g^{g} Overall yield, Scheme IV.

[^2]: (5) Bicking, J. B.; Jones, J. H.; Holtz, W. J.; Robb, C. M.; Kuehl, F. A., Jr.; Minsker, D. H.; Cragoe, E. J., Jr. J. Med. Chem. 1978, 21, 1011.

[^3]: ${ }^{a}$ The variable was recorded at $2-\mathrm{min}$ intervals. Data so obtained were averaged for the $30-\mathrm{min}$ control period and for each of the 5-h of postdrug or postplacebo observation. ${ }^{b}$ A 30 -min pretreatment period. ${ }^{c}$ Hours after drug or placebo administration. d Lactose capsule po. Time control experiments to determine the stability of the preparation under the experimental conditions.

[^4]: (11) Bohlmann, F.; Bornowski, H.; Herbst, P. Chem. Ber. 1960, 93, 1931.

